Меню
Радиоэлектроника для начинающих

Универсальный тестер радиокомпонентов

Измеритель ESR R/C/L и тестер полупроводников

Любому, кто работает с электроникой, требуется тестер радиоэлектронных компонентов. В большинстве случаев электронщики всех мастей обходятся цифровым мультиметром. Им можно проверить с достаточной точностью самые частоиспользуемые электронные компоненты: диоды, биполярные транзисторы, конденсаторы, резисторы и пр.

Но, среди радиодеталей есть и такие, проверить которые рядовым мультиметром сложно, а порой и невозможно. К таким можно отнести полевые транзисторы (как MOSFET, так и J-FET). Также, обычный мультиметр не всегда имеет функцию замера ёмкости конденсаторов, в том числе и электролитических. И даже если таковая функция имеется, то прибор, как правило, не измеряет ещё один очень важный параметр электролитических конденсаторов – эквивалентное последовательное сопротивление (ЭПС или ESR).

С недавнего времени стали доступны по цене универсальные измерители R, C, L и ESR. Многие из них обладают возможностью проверки практически всех ходовых радиодеталей.

Давайте узнаем, какими возможностями обладает такой тестер. На фото универсальный тестер R, C, L и ESR - MTester V2.07 (QS2015-T4). Он же LCR T4 Tester. Приобрёл я его на Алиэкспресс. Не удивляйтесь, что прибор без корпуса, с ним он стоит куда дороже. Вот здесь вариант без корпуса, а вот здесь с корпусом.

Универсальный тестер MTester V2.07

Тестер радиодеталей собран на микроконтроллере Atmega328p. Также на печатной плате имеются SMD-транзисторы с маркировкой J6 (биполярный S9014), M6 (S9015), интегральный стабилизатор 78L05, TL431 - прецизионный регулятор напряжения (регулируемый стабилитрон), SMD-диоды 1N4148, кварц на 8,042 МГц. и "рассыпуха" - планарные конденсаторы и резисторы.

Печатная плата тестера MTester v2.07 на базе Atmega328

Прибор запитывается от батарейки на 9V (типоразмер 6F22). Впрочем, если такой нет под рукой, прибор можно запитать и от стабилизированного блока питания.

На печатной плате тестера установлена ZIF-панель. Рядом указаны цифры 1,2,3,1,1,1,1. Дополнительные клеммы верхнего ряда ZIF-панели (те, которые 1,1,1,1) дублируют клемму под номером 1. Это для того, чтобы было легче устанавливать детали с разнесёнными выводами. Кстати, стоит отметить, что нижний ряд клемм дублирует клеммы 2 и 3. Для 2 отведено 3 дополнительных клеммы, а для 3 уже 4. В этом можно убедиться, осмотрев разводку печатных проводников на другой стороне печатной платы.

Итак, каковы же возможности данного тестера?

Замер ёмкости и параметров электролитического конденсатора.

Для начала проверим электролитический конденсатор на 1000 мкФ * 16V. Подключаем один вывод электролита к выводу 1, а другой к выводу 3.

Замер параметров электролита 1000 мкФ

Можно подключит один из выводов к клемме 2. Прибор сам определит, к каким выводам подключен конденсатор. Далее жмём на красную кнопку.

Тестирование электролитического конденсатора 1000 мкФ

На экране результат: ёмкость - 1004 мкФ (1004 μF); ЭПС - 0,05 Ом (ESR = 0,05Ω); Vloss = 1,4%. О параметре Vloss расскажу позднее.

Проверка танталового электролитического конденсатора 22 мкФ * 35в.

Параметры танталового конденсатора 22мкФ*35в

Результат: ёмкость - 24,4 мкФ; ЭПС - 0,2 Ом., Vloss = 0,4%

Тестер можно использовать и для замера ёмкости у обычных конденсаторов с ёмкостью где-то от 20 пикофарад (20pF). Если подключить к ZIF-Панели выносные щупы, то можно проверять и детали, выполненные в корпусах для поверхностного (SMT) монтажа. Я, например, с помощью этого тестера подбирал SMD-конденсаторы и резисторы.

Обращаю внимание! Перед тестированием конденсаторов, особенно электролитических, их необходимо разрядить! Иначе можно повредить прибор высоким остаточным напряжением. Особенно это относится к электролитам, выпаянным с плат.

Таинственный параметр Vloss.

При проверке конденсаторов, кроме ёмкости и ESR, универсальный тестер показывает ещё такой параметр, как Vloss. Что же он означает? К сожалению, точного и конкретного обоснования этого термина я не нашёл. Но, судя по всему, он косвенно указывает на уровень утечки конденсатора. Как известно, реальный конденсатор имеет сопротивление диэлектрика между обкладками. Благодаря этому сопротивлению конденсатор медленно разряжается из-за, так называемого, тока утечки.

Так вот, при заряде конденсатора коротким импульсом тока напряжение на его обкладках достигает определённого уровня. Но, как только заряд конденсатора прекращается, напряжение на заряженном конденсаторе падает на очень небольшую величину. Разность между максимальным напряжением на конденсаторе и тем, что наблюдается после завершения заряда и выражают как Vloss. Чтобы было удобней, Vloss выражают в процентах.

Падение напряжения на обкладках конденсатора объясняют как внутренним рассеиванием заряда, так и сопротивлением между обкладками, которое имеется у всех конденсаторов, так как любой диэлектрик имеет, пусть и большое, но сопротивление.

Для керамических и электролитических конденсаторов высокий показатель Vloss в несколько процентов свидетельствует о плохом качестве конденсатора.

Проверка полевых J-FET и MOSFET транзисторов.

Теперь давайте протестируем широко известный MOSFET транзистор IRFZ44N. Вставляем его в панель так, чтобы его выводы были подключены к клеммам 1,2,3.

Проверка MOSFET-транзистора универсальным тестером

Никаких правил подключения соблюдать не надо, как уже говорилось, прибор сам определить цоколёвку детали и выдаст результат на дисплей.

Проверка MOSFET-транзистора универсальным тестером

На дисплее, кроме цоколёвки транзистора и его типа (n-канальный MOSFET), тестер указывает величину порогового напряжения открытия транзистора VGS(th) (Vt = 3,74V) и ёмкость затвора транзистора Ciis (C = 2,51nF). Если заглянуть в даташит на IRFZ44N и найти там значение VGS(th), то можно обнаружить, что оно находится в пределах 2 - 4 вольт.

Более подробно об основных параметрах MOSFET-транзисторов я уже писал здесь.

Также советую заглянуть на страничку, где рассказывается о разновидностях полевых транзисторов и их обозначении на схеме. Это поможет понять, что же вам показывает прибор.

Проверка биполярных транзисторов.

В качестве подопытного "кролика" возьмём наш КТ817Г. Как видим, у биполярных транзисторов измеряется коэффициент усиления hFE (он же h21э) и напряжение смещения Б-Э (открытия транзистора) Uf. Для кремниевых биполярных транзисторов напряжение смещения находится в пределах 0,6 ~ 0,7 вольт. Для нашего КТ817Г оно составило 0,615 вольт (615mV).

Параметры биполярного транзистора КТ817Г

Составные биполярные транзисторы тоже распознаёт. Вот только параметрам на дисплее я бы верить не стал. Ну, действительно. Не может составной транзистор иметь коэффициент усиления hFE = 37. Для КТ973А минимальный hFE должен быть не менее 750.

Тест составного транзистора КТ973А

Как оказалось, структуру для КТ973А (PNP) и КТ972А (NPN) определяет верно. Но вот всё остальное замеряет некорректно.

Некорректные результаты тестирования составного транзистора КТ972А

Стоит учесть, что если хотя бы один из переходов транзистора пробит, то тестер может определить его как диод.

Проверка диодов универсальным тестером.

Образец для испытаний - диод 1N4007.

Проверка диода 1N4007

Для диодов указывается падение напряжения на p-n переходе в открытом состоянии Uf. В техдокументации на диоды указывается как VF - Forward Voltage (иногда VFM). Замечу, что при разном прямом токе через диод величина этого параметра также меняется.

Для данного диода 1N4007: VF=677mV (0,677V). Это нормальное значение для низкочастотного выпрямительного диода. А вот у диодов Шоттки это значение ниже, поэтому их и рекомендуют применять в устройствах с низковольтным автономным питанием.

Кроме этого тестер замеряет и ёмкость p-n перехода (C=8pF).

Результат проверки диода КД106А. Как видим, ёмкость перехода у него во много раз больше, чем у диода 1N4007. Аж 184 пикофарады!

Проверка диода КД106А

Если вместо диода установить светодиод и включить проверку, то во время тестирования он будет задорно помигивать.

Результаты проверки светодиода

Для светодиодов тестер показывает ёмкость перехода и минимальное напряжение, при котором светодиод открывается и начинает излучать. Конкретно для этого красного светодиода оно составило Uf = 1,84V.

Как оказалось, универсальный тестер справляется и с проверкой сдвоенных диодов, которые можно встретить в компьютерных блоках питания, преобразователях напряжения автоусилителей, всевозможных блоках питания.

Проверка сдвоенного диода MBR20100CT

Проверка сдвоенного диода MBR20100CT.

Результат проверки диодной сборки MBR20100CT

Тестер показывает падение напряжения на каждом из диодов Uf = 299mV (в даташитах указывается как VF), а также цоколёвку. Не забываем, что сдвоенные диоды бывают как с общим анодом, так и общим катодом.

Проверка резисторов.

Данный тестер отлично справляется с замером сопротивления резисторов, в том числе переменных и подстроечных. Вот так прибор определяет подстроечный резистор типа 3296 на 1 кОм. На дисплее переменный или подстроечный резистор отображается в виде двух резисторов, что не удивительно.

Проверка резисторов универсальным тестером

Также можно проверить постоянные резисторы с сопротивлением вплоть до долей ома. Вот пример. Резистор сопротивлением 0,1 Ома (R10).

Замер сопротивления низкоомных резисторов

Замер индуктивности катушек и дросселей.

На практике не менее востребована функция замера индуктивности у катушек и дросселей. И если на крупногабаритных изделиях наносят маркировку с указанием параметров, то вот на малогабаритных и SMD-индуктивностях такой маркировки нет. Прибор поможет и в этом случае.

На дисплее результат измерения параметров дросселя на 330 мкГ (0,33 миллиГенри).

Замер индуктивности с помощью тестера

Кроме индуктивности дросселя (0,3 мГ) тестер определил его сопротивление постоянному току - 1 Ом (1,0Ω).

Индуктивность дросселя

Маломощные симисторы данный тестер проверяет без проблем. Я, например, проверял им MCR22-8.

Определение цоколёвки тиристора MCR22-8

А вот более мощный тиристор BT151-800R в корпусе TO-220 прибор протестировать не смог и отобразил на дисплее надпись "? No, unknown or damaged part", что в вольном переводе означает "Отсутствует, неизвестная или повреждённая деталь".

Кроме всего прочего, универсальный тестер может замерять напряжение батареек и аккумуляторов.

Я был обрадован ещё и тем, что данным прибором можно проверить оптопары. Правда, проверить такие «составные» детали можно только в несколько этапов, поскольку они состоят минимум из двух изолированных между собой частей.

Покажу на примере. Вот внутреннее устройство оптопары TLP627.

Внутренняя структура и цоколёвка оптопары TLP627

Излучающий диод подключается к выводам 1 и 2. Подключим их к клеммам прибора и посмотрим, что он нам покажет.

Проверка оптопары TLP627 со стороны излучающего диода

Как видим, тестер определил, что к его клеммам подключили диод и отобразил напряжение, при котором он начинает излучать Uf = 1,15V. Далее подключаем к тестеру 3 и 4 выводы оптопары.

Проверка оптопары TLP627 со стороны фототранзистора

На этот раз тестер определил, что к нему подключили обычный диод. В этом нет ничего удивительного. Взгляните на внутреннюю структуру оптопары TLP627 и вы увидите, что к выводам эмиттера и коллектора фототранзистора подключен диод. Он шунтирует выводы транзистора и тестер "видит" только его.

Так мы проверили исправность оптопары TLP627. Похожим образом мне удалось проверить и маломощное твёрдотельное реле типа К293КП17Р.

Теперь расскажу о том, какие детали этим тестером НЕ проверить.

  • Мощные тиристоры. При проверке тиристора BT151-800R прибор показал на дисплее биполярный транзистор с нулевыми значениями hFE и Uf. Другой экземпляр тиристора определил как неисправный. Возможно, это действительно так и есть;

  • Стабилитроны. Определяет как диод. Основных параметров стабилитрона вы не получите, но можно удостовериться в целостности P-N перехода. Производителем заявлено корректное распознавание стабилитронов с напряжением стабилизации менее 4,5V.
    При ремонте всё-таки рекомендую не полагаться на показания прибора, а заменять стабилитрон новым, так как бывает, что стабилитроны исправны, но напряжение стабилизации «гуляет»;

  • Любые микросхемы, такие как интегральные стабилизаторы 78L05, 79L05 и им подобные. Думаю, пояснения излишни;

  • Динисторы. Собственно, это понятно, так как динистор открывается только при напряжении в несколько десятков вольт, например, 32V, как у распространённого DB3;

  • Ионисторы прибор также не распознаёт. Видимо из-за большого времени заряда;

  • Варисторы определяет как конденсаторы;

  • Однонаправленные супрессоры определяет как диоды.

Универсальный тестер не останется без дела у любого радиолюбителя, а радиомеханикам сэкономит кучу времени и денег.

Стоит понимать, что при проверке неисправных полупроводниковых элементов, прибор может определить тип элемента некорректно. Так, биполярный транзистор с одним пробитым p-n переходом, он может определить как диод. А вздувшийся электролитический конденсатор с огромной утечкой распознать как два встречно-включенных диода. Такое бывало. Думаю, не надо объяснять, что это свидетельствует о негодности радиодетали.

Но, стоит учесть тот факт, что также имеет место и некорректное определение значений из-за плохого контакта выводов детали в ZIF-панели. Поэтому в некоторых случаях следует повторно установить деталь в панель и провести проверку.

Главная » Радиоэлектроника для начинающих » Текущая страница

Также Вам будет интересно узнать:

 

Copyright © Go-Radio.ru